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1. Introduction

The dynamics of optical solitons propagating through
optical fibers for trans-continental and trans-oceanic
distances is governed by the nonlinear Schrddinger's
equation (NLSE). This NLSE is derived from Maxwell's
equation in electromagnetic by the aid of multiple-scale
perturbation analysis. The NLSE appears, in the literature
of optical solitons, with several forms of nonlinearity that
depends on the context where it is studied. The most
known mathematical modeling of optical systems
generally is expressed by types of NLSE. The details of
NLSE are given in the studies on nonlinear optics [1-50].

It is crucial to reach general solutions of these
corresponding nonlinear equations. Thus, the general
solutions of these equations provide much information
about the character and the structure of solitons that
governs the technological advances in telecommunications
industry. Many effective methods have been improved to
provide much information for scientists and engineers.
Some of these methods are extended tanh, G’/G-
expansion, Jacobi elliptic function, functional variable, F-
expansion, ansatz approach, first integral, Kudryashov,
and trial equation methods [1-50]. All of these methods are
effective methods for acquiring traveling wave solutions
NPDE.

The FIM initially has been successfully applied
earlier, to solve Burgers-KdV equation, by Feng [16]. This
method has also been successfully implemented in various
forms of nonlinear evolution equations, including
fractional evolution equations that resulted in the retrieval
of a spectrum of novel solutions. During recent years,
many studies on this method have been made. Raslan [39]
has used this method for the Fisher equation. Tascan and
Bekir [43] have used this method for Cahn-Allen equation.
Abbasbandy and Shirzadi [1] have investigated Benjamin
Bona-Mohany equation by this method. Jafari et al. [23]
and K. Hosseini et al. [24] has researched w.r.t for Biswas-
Milovic equation and KP equation so on [22], [41].

This paper discusses a version of NLSE that is known
as resonant NLSE (RNLSE) which also yields soliton
solutions. There are three integration schemes that are
applied here. They are first integral method, generalized
Kudryashov’s scheme and the extended trial equation
algorithm. These are schematically described in the
following three sections and are successfully applied to
RNLSE with various nonlinear forms. Soliton and other
solutions therefore successfully emerged.
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2. Governing Equation

RNLSE [14], [15], [33-37] in dimensionless form [45]
with time dependent coefficients is

ih, +a(t)h,, +b(t)F(|h|2)h+

C(t){%jh —id (t), @)

where the terms a(t),b(t),c(t) and d(t) are group

velocity dipersion, nonlinear, resonant and also linear
attenuation, respectively. We will discuss the equation (1)
in the power law nonlinearity, which seems in the
circumstances that form the setting for plasma physics,
turbulance theory and nonlinear fiber optics, as following:

|h|XX
i

ih, +a(t)h, +b(t) " h+c(t)[ jh =0 (2

such that £ =X Fct and Q"' =0Q(&)/0&.
where m is the nonlinear parameter.

3. First integral method

The proposed method can be summarized in the
following steps:

Step 1. The common nonlinear partial differential equation

NPDE:

W(h,h,h,h,h,h,,..)=0, ©)
using a wave variable & = X7 Cttransforms to the
ordinary differential equation (ODE) as

L(H,H,H" H",..)=0 4)
such that H'=0H (&) /8¢&.
Step 2. The solution of ODE (4) can be written as:
h(x,t) = h(¢) ®)
Step 3. Taking the following independent variables as
H($) =h(£).G(&) =aoh(5)/os  (6)
a new system of ODEs are given by

oH(£)/ 05 =G(S)

)

oF (&) 105 =P(H($),G(S))
Step 4. Due to lack of systematic theory which gives us
some methods for finding first integrals, we will apply the
Division Theorem (DT) to obtain the integrals (7). This

will reduce (2) to a first-order integrable ODE. Finally, an
exact solution to (1) is obtained by solving this equation.

3.1. Application to R-NLSE
We use the following transformation
h=H (g)ei[‘““fv“)‘“}, £ = px+fw(t)dt
and get ODE system

(W—2aaf)H, =0, ®)

(v+aa®)H-bH*™ —(a+c)*H. =0  (9)

Then, solving (8) we get

W= 2aaf (120)

Further, we balance the term H*™* with H_., and

substitute the transformation H :Q% into (9) and obtain:

(v+ aa’ ) m’Q? —m?*bQ* +

(11)
(m-1)(a+c)4*QZ -m(a+c)B°QQ,. =0,

By using transformation Q, =G, we have

B (v+aa®)m*Q* -m*bQ*
€ m(a+c)A°Q
(m-1)(a+c)pB’G’

m(a+c)s°Q

(12)

Assuming that d&=Qdz we get

Q, =QG,
_(v+aa2)mQ2_ mbQ* G_2 (13)

(a+c)p m

T (a+c)p

Further, it is supposed that H(z) and G(z) are non-

trivial solutions of Eq. (13) and F(Q,G) = Z::Oai (QG' is
an irreducible function in the domain C[Q,G] satisfying

F(Q().6(7) = 3 Q' =0 (14)

where a,(Q), (1=0,1,2,...,r)are polynomials of Q and
a,(Q)#0. Eq.(12) s the first integral for system (13),
owing to the DT, there exists g(Q)+h(Q)G in C[Q,G]
as:
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_dF dQ  dF dG

740 dr  dG dr

i (15)
=[9(Q)+h(Q)GI a (Q)G'

Considering r=1 in Eg. (15) and equating the
coefficients of G'(i=0,12,...,r) of Eq. (15, we have

4,(Q)Q = aAQ)(h(Q) —%) (16)

8,(Q)Q =2,(Q)9(Q) +h(Q)a,(Q) 17

3,(Q)9(Q)=a,(Q)
(v+aa®)mQ’  mbQ* (18)
(a+c)p®  (a+c)p?

Since a(Q)(i=0,1)is polynomial of Q,3(Q) is a
constant and h(Q) =+ from (14). For convenience, it is
obtained &, (Q) =1. By equalization the degrees of g(Q)
and a,(Q) we conclude the degree of g(Q) is equal to
two. Then, we assume that g(Q) =G, +G,Q+G,Q*, we
obtain from Eq. (17) as follows

3,(Q) =AQ* +AQ+A (19)

Replacing  2,(Q), &(Q) and g(Q) in Eqg. (18) to
separate the common factor of the same terms, then
equating the coefficients of Q' to zero, we have following
cases:

__aG2a2+bGO
G, b (20)
A=A=G=0A, Z—W-
V:_w,% -G, =0,
’ (21)
po_Gmb_ o m
G:(a+c)p*’ G,(a+c)p’
mb
A=G=G=0A=-—""""+
G,(a+c)p 22

ama?® +mv

A’:Gz(a+c)ﬂ2'

A1=Go 261=O7Ao=aaz+vy
G,
(23)
A
G,(a+c)p?

setting (20-23) into (14) with respectively, we have

3 mb 2
Q. G (arof Q* (%) (24)
-G,mb mb 2
Q. = Py Q(§)+Gz(a+c)ﬂ2 Q(§) (29
__ama’+my mb >
Q= G,(a+c)p? +Gz(a+c)ﬂ2 SRR
Q--Yrar, M i )

G, G,(a+c)p

If we solve the Egs. (24-27) with respectively: Firstly
we have the following rational solution from Eq. (24)

Q) -—-— (28)

G, (a+c) 52 5 + CU

Where C, is constant and the solution of the Eq. (2) with
the transformation H =Q" and h= H(&) Lol (V)[]?
&= Bx+[w(t)dt.

1
m (Bx+ Jw(t)dt)+C, (29)

G,(a+c)

ei[—ax+jv(t)dt}

h(x,t)=| -

aG,a’ +bG,

where w(t) =2a(t)efand v=-=¢
Secondly, we have the following solution from (25)

G
Q) =—F—— e
Gz _'_er(aJrc)/?Z v (30)
— Gl
G,mb . G,mb
G, +cosh| ——2——E+G,C, |+sinh| ——2—— +G,C
 t {G;(a+c)ﬂ2§+ | o}*’ [G;(a+c)ﬂ2§+ ) o}

and the original solution of the Eq. (2) is
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" %GE Jotya (31)
7 S Ax+ |w(t)dt |+ G,Cy
G2 +cosh { Gy(ate)s ‘| .
sinh [ Gzzglf‘“:ﬁz(ﬁxt[w(t)dl%elco ‘|
ei[wm[v(t)ml
where w(t) =2a(t)af and v= _% '

Thirdly, we have the similar forms for Egs. (26,27) so
we will acquired the one of these equations. For the Eqg.
(27), we have the following dark solion solution

(a+c)(ac®+v)

Q=4

bm
p’\jbm(a+c)(aa2—v) (32)
tanh
&
((a+c)G2p2 + CO)
and the original solution of the Eq. (2) is
(a+c)(aa®-v "
py )
h(x,t) = ByJb(a+c)(aa”+v)
tanh (33)
ﬁx+jw(t)dt e
(m-1)(a+c)G,82 0
ei[—amjv(t)dt] .
For another type solution of Eq. (27), if we
v—ag® _ 1 mb _—_1
chooseG—2 =3 and S @ 2 , then the Eq.

(27) becomes

Q. =%—%Q2(§)- (34)

It is illustrated the solution of the Eq. (34) by Chen
and Zhang [41], Eq. (34) has the following solution

Q(&) =tanh[&] +isech[£]. (35)

So we have the following dark-brigth optical combo
soliton solution of the Eq. (2)

tanh[/?x+Jw(t)dt]i [
) isech[/j’x+jw(t)dt] ’

—ax+J.v(t)dt} (36)

where w(t) =2a(t)es, % =1 and

mb —
Gy(m-1)(a+c) B2

N[~

4. Generalized Kudryashov's Method

In this section, we describe the generalized
Kudryashov method [12] for finding traveling wave
solutions of nonlinear partial differential equations
(NLPDE) and subsequently will apply this method to solve
the R-NLSE.

We suppose that the given NLPDE for u(x,t) is in

the form

P(u’ut’ux’uxx’uxl’utt""):O’ (37)

where P is a polynomial. The essence of the generalized
Kudryashov method can be presented in the following
steps:

Step-1: To find the traveling wave solutions of Eq. (37),
we introduce the wave variable

u(x,t) =U (&), &=x—wt, (38)

where v is a constant to be determined later. Substituting
Eg. (38) into Eq. (37), we obtain the following ODE

QU,u,U",..)=0. (39)

Step-2: Suppose that solution of the Eg. (39) can be
written as follows:

ZN:kiQ‘(é)
1,Q'(&)
where k; (i=0,1,...N) and |I;(j=0,1,...M) are

constants to be determined later, and Q(¢&) is 1/(1+e).
We recall that the function Q(&) is solution of equation
[26]

Q. =Q*-Q. (41)

Taking into consideration (40) along with (41), we have

(42)

U = (@ —Q)[—A'B‘ AB'}

BZ
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(2Q -1)(A'B- AB') +

Q?-Q[B(A"B-AB") (43)
B | 2A'BB'+2A(B')’

Q-

U&= 52

and so on. Here, the prime denotes the derivative with
respectto £.

Step-3: Considering the homogeneous balance between
the highest order derivatives and nonlinear terms
appearing in ODE (39), We can determine a relation of
M and N . We can take some valuesof M and N .
Step-4: Substituting expressions given by Eqs. (40)-(43)
into Eg. (39), we obtain a polynomial A(Q) of Q.
Equating the coefficients of this polynomial to zero, we
get a system of algebraic equations. Solving this system,
we can find the values of unknown parameters. As a result,
we obtain the exact solutions to Eq. (37).

4.1. Application to R-NLSE (Kerr law)

In this section, we apply the generalized Kudryashov
method to solve the resonant nonlinear Schrddinger’s
equation (45)

iwt+awxx+ﬂF<|w|2>w+y{%}w:o. (44)

The Kerr law nonlinearity is the case when F(s) =s.

This kind of nonlinearity typically arises in the context of
water waves or nonlinear fiber optics when the refractive
index of the light is proportional to the intensity. For Kerr-
law nonlinearity, the considered generalized RNLS
equation is given by

iw+awxx+ﬂ|wlzw+7{%}w=0- (45)

Under the travelling wave transformation

w(x,t) =U(E)e! ) 2= x4 2kt (46)
we have
(a+7/)U”—(a)+/<2a)U +pU*=0 (47)

We will now analyze Eq. (47) to secure soliton solutions
by generalized Kudryashov method. We substitute Egs.
(40) and (43) into Eq. (47). Then, we employ the balance
principle and determine a relation of M and N as

N=M+1 (48)

Case-1: When M =0 and N =1 in Eqg. (48), we have
the solution of Eq. (47) in the form

ko +kQ()

IO

U(é) = (49)

where k, =0 and |, #0. Substituting Eq. (49) into Eq.

(47), we have a system of algebraic equations. Solving this
system, we find the following results:

Loty ilyyJ2(c +7)
R

L=1,, o= —%[7+a(1+21€2)}

ko = k=7

Substituting Eq. (50) along with Q(&) =1/(1+e°)
into (49), and inserting the result into the wave

transformation (46), we obtain the following solitary wave
solutions to Eq. (45), respectively:

l//(X t) -+ |— o+ v tanh( X+ 20(Kt jei{m;[;/Jra(lJrZ,(z):itJrﬂ}
N 2 2 :

. (51)
an
_ ’_ a+y X + 2ait i{—xx—%[;ura(hb(z ﬂua}
w(xt)=+ 25 coth( 7 je .
(52)

Case-2: When M =1 and N =2 in Eq. (48), we have
the solution of Eq. (47) in the form

ko +kQ(&) +k,Q* (&)
l, +1,Q(¢)

U(e) = (53)

where k, #0 and |, = 0. Substituting Eq. (53) into Eq.

(47), we have a system of algebraic equations. Solving this
system, we find the following results:
Set-1.

k =0, klziill,fa+}/, il, 2(a+7),
T
lLb=0, =1, w= —%[y+a(l+2/<2)}
Set-2.

k,=F

20l \[2(a+7)

NG ’6®

k=0, k, =
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Set-3.
K —+”° a+y I(l_¢i(2lo—|1)afaz+y
0__—1 - —1
1/2/)’ ,ﬁﬁ
_ilJ2(a+7)
k2:+1Tv |0=|0, I1:|11 (56)
1 2
a)=—5[}/+a(1+2k )J
Set-4.
k, =0, I(1:i2||0 2(a+y) k2:$2”° 2(a+y)

B VB
Iy =1y, I, ==2l,, @o=a+y-ax?
(57)

where x is arbitrary constant. Consequently, we obtain
the following exact traveling wave solutions to the R-
NLSE with Kerr law nonlinearity:

By using the results in Egs. (54)-(56), we find exact 1-
soliton solutions as

B ’_ a+y X + 2ait i{—ro(—%[;/Jra(lJrZr(z ﬂua}
w(xt) ==+ 25 tanh[ 2 ]e ,

; (58)
an
_ ’_ a+y X + 2ait i{—m—%[;ura(hz;(z H”H}
w(xt)=+ 27 coth( 2 ]e .
(59)

By using the results in Eqg. (57), we have solitary wave
solutions as

y(x1= i\/@csch (x+ Za,d)ei{ﬂ*(”*y*"”z Jve} ,

(60)

and
y(xt)= i\/@sech(x + 2a,<t)ei{_m(“*7 “’Kz)”@}_
(61)

4.2. Application to R-NLSE (Power law)

The power law nonlinearity arises when F(s)=s",

where the parameter m is referred to as the nonlinearity
parameter. This kind of law appears in the context of
plasma physics, turbulence theory and also sometimes in
the case of nonlinear fiber optics. It needs to be however
noted that one must have 0 <m< 2 in order to avoid self-

focusing singularity and soliton collapse [45]. For power
law nonlinearity, the R-NLSE takes the form

iw+al//xx+ﬂ|l//|2”l//+7{%}w=0 (62)

For searching the one-soliton solution for the above
model, we use the same wave transformation

w(x,t) =U (&)™) £ = x4 2xcat. (63)

Substituting Eq. (63) into Eq. (62), we obtain ordinary
differential equation:

(a+7)U"~(o+x*a)U+pU*" =0 (64)

To obtain an analytic solution, we use the transformation
1

U =V 2 in Eq. (64) to find

(@+7)((1-2n)(V")* +2nW ")

(65)
~4(@+xa)nV? + 407V = 0
We will now analyze Eq. (65) to obtain soliton
solutions by generalized Kudryashov method. We
substitute Eqgs. (40), (42) and (43) into Eq. (65). Then, we
employ the balance principle and determine a relation of
M and N as

N=M+2 (66)

Case-1: When M =0 and N =2 in Eq. (66), then we
can write the solution of Eq. (65) in the form

ko +kQ(&) +k,Q* (&)

IO

V(&)= 67)

where k, #0 and |, = 0. Substituting Eq. (67) into Eq.

(65), we have a system of algebraic equations. Solving this
system, we find the following results:

_ _ _ __ kn’g
k, =0, =k, k,=-k, l,=—"——,
L=k 4 @A+n)(a+y) (68)

a+
®=—-ak’ + 27/
4n

Substituting Eq. (68) along with Q(&) =1/(1+e°) into
1

Eq. (67) and using the transformation U =V 2", we obtain

exact solution to Eqg. (64). Consequently, we have the

exact 1-soliton solutions to Eq. (62) as follows:
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1

w(x.t) = {(1+ M@ +7) o2 ( X+ iam j}Zn

an’p (©9)
ei{*l()(‘#[*[lk‘z +ZTZJI+B}
and
w(x,t) = {_wmhz (Mj}m
an°p 2 (70)

i) xxt| —an? + 277 |ty

e { [ 4n2 ]t 6}

Case-2: When M =1 and N =3 in Eq. (66), we have the
solution of Eqg. (65) in the form

ko +kiQ(&) +k,Q%(£) + k:Q° ()
lo +1,Q(S)

V()= ’ (71)

where k, =0 and |, 0. Substituting Eq. (71) into Eq.

(65), we have a system of algebraic equations. Solving this
system, we find the following results:

Set-1.
k=0, k=0, k = drN@+y)
n°g
__L@+n(a+y) , _ _
ks - nzﬂ ’Io =0, |1 - I1’ (72)
o=-ax’ + +27
4n
Set-2.
k=0, k= I1(1+n2)(a+y), K =0,
n°g
K = - L (1+ nz(a +7) , (73)
n°g
a+
L=l, L=l, o=-ax’+ 4n27,
Set-3.
k=0, k = I, (1+ nz)(a+7/)’
n°g
(o -L)rn(@+y)
2 = 2 ’
n°g
(< L@ty 74
3 I’IZ,B '
=1, L=l, o=-ax?+27

4n?

where x is arbitrary constant. Consequently, we have the
exact 1-soliton solutions to the R-NLSE with power law
nonlinearity as follows:

w(x,t) = {(“ n)(a+7) sech’ ( X+2axt j}zn
’ 4n’p 2 (75)
ei{—kx{—mcz +ZT+27]H9}
and
| @+n)a+y) o X+ 2axt %
w(xt) = {_—4n2/3 csch (—2 j} 76)

i —KX+ —aK2+L+y t+0
4n?
€

4.3. Application to R-NLSE (Parabolic law)

For parabolic-law nonlinearity, F(s) = fs+ys?,

whereb and care in general constants. Such a kind of
nonlinearity appears also in fiber optics. In this case, the
R-NLSE is

v, +ay, + (Bly f +y|w|“}w+d{'|‘”w'x|*}w=0<77)

We use the same wave transformation
w(x,t) =U (&)™) £= x4 2kt (78)

Substituting (78) into (77), we obtain ordinary differential
equation:

(@+d)U"—(o+x’a)U+ AU+ U =0 (79)

1
By using transformation U =V 2, Eq. (79) becomes

(05"'d)(ZVV”—(\/')2)—4(a)+1c20t)V2
AN +4N* =0.

(80)

We will now analyze Eg. (80) to construct soliton
solutions by generalized Kudryashov method. We
substitute Eqgs. (40), (42) and (43) into Eq. (80). Then, we
employ the balance principle and determine a relation of
M and N as

N=M+1 (81)

Case-1: When M =0 and N =1 in Eqg. (81), then we
have the solution of Eg. (80) in the form

K, +k,Q(S)

I0

V()= (82)
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where k; =0 and |, = 0. Substituting Eqg. (82) into Eq.

(80), we obtain a system of algebraic equations. Solving
this system, we find the following results:

Set-1.
kO:O, &:M, |0_0' = _ 3ﬂ2 ,
Yij 4(d + ) (83)
a)=%(d+a—4m(2)
Set-2.
k=o@ra) o Llra) o
s B (84)

2
y=- 3P , a)=1(d+a—4akz)
4(d +a) 4

where x is an arbitrary constant. Substituting Eqgs. (83)-

(84) along with Q(&) =1/(1+e°) into Eq. (82) and using
1

the transformation U =V 2, we obtain exact solution to

Eg. (79). Consequently, we have the exact 1-soliton

solutions to Eq. (77) as follows:

By using the results in Eq. (83), we find

_Jd+af, X+ 2axt )| 2
"’(X't)'{ 25 [1 ta”h{ 2 D} (85)

i{—xm%(d +a—dax? )t+§}

e

_Jd+af, X+ 2axt |2
y/(x,t)—{—zﬂ (1 coth{ 5 D} (86)

ei{fl(x+%(d+a74a/(2 )HB}

and

By using the results in Eq. (84), we have

_Jd+a X+ 2axt )] 2
w(x,t)—{ 25 (l+tanh{ > D} @7

i{—r«x+1(d +a—4wc2 )t+x9l
4 J

e

and

_Jd+a X+ 2axt ]| 2
y/(x,t)—{ 25 (l+coth{—2 D} (©8)

i{—r«x+1(d +a—4ak2 )HG}
e 4

Case-2: When M =1 and N =2 in Eg. (81), then we
have the solution of Eg. (80) in the form

K +k Q) +K,Q* () )

[ R TTE)

where k, =0 and |, = 0. Substituting Eq. (89) into Eq.

(80), we obtain a system of algebraic equations. Solving
this system, we find the following results:

Set-1.
k=0, k= l,(d +a)’ K, = l,(d +a),
B B
_ _ __ 3y
L=1, L=, = 4(d+a), (90)
wI%(d +a—40nc2)
Set-2.
k=0, k= 21, +1)d +a), = (2, +1)(d +a),
B B
317 5°

L= L=, y=

4@, + 1)’ d+a)

a)=%(d +O!—4(ZK'2)

(91)
Set-3.
K =o@ra) oy G-h)dra)
B B
K, - _h@d+a) L =1, L=,
B

:__3ﬁ2 , wzl(d +a-4ak’

4(d +a) 4 ©2)

where x is an arbitrary constant. Consequently, we obtain
the following exact traveling wave solutions to the RNLSE
with parabolic-law nonlinearity:

By using the results in Eg. (90), we find exact 1-
soliton solutions as

d+ X+ 2akt %
U/(x,t):{ zﬁa(l—tanh[ 2a D} (93)

i{fmﬁ%(ddru—élm(z )HO}

e

_Jd+af, X+ 2axt )| 2
yx(x,t)-{ 25 (1 coth{ 5 D} (94)

i{—xx+%(d +a—4wc2 )t+€}

and

e

By using the results in Eq. (91), we have solitary
wave solutions as
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2
21, +1,)(d + a)sech? [“i‘”’ﬂ

Zﬂ(ZIO +1,—1, tanh [“éfmﬂ (95)

i{*l&"X‘F%(d +a—dax? )t+€}

w(xt) =

e

and

2
@1, +1,)(d + @)csch? [“i""ﬂ

2ﬂ[2l0 +1, —1, coth {H?MD (96)

ei{ﬂ()ﬁ%(d +zzf4wc2 )t+9}

l//(X,t) =4

By using the results in Eqg. (92), we obtain exact 1-
soliton solutions as

_Jd+a x+2axt )] 2
w(x,t)—{ 25 (l+tanh{—2 D} @)

iJ—KX+1(d+a—4aK2)t+9l
1 4

e J

_|d+a x+2axt 1|2
y/(x,t)—{—zﬂ [1+coth{—2 D} (98)

i [*KX+1(C’+D{*40[K2 )HB}
177

and

e

4.4. Application to R-NLSE (Dual-power law)

The dual-power law nonlinearity is formulated as
F(s)=p3s"+ys™, where b and ¢ are in general
constants. This law is a generalization of the parabolic law
nonlinearity. In fact, setting n=1, the dual-power law

collapses to parabolic law nonlinearity. In this case, the R-
NLSE is

iy, + oy, +{ v P +y|w|“"}w+d{'|'”w'7}w:0(99)

Without loss of generality, we assume that the solution
w(x,t) to Eq. (99) takes the form

w(xt) =U(E)eT™ ) £= x4+ 2kat  (100)
Using this the wave transformation, we have
(@+d)U"—(o+Kx*a)U+pUT ™+ U =0 (101)

To obtain an solution, we

1

transformation denoted by U =V 2'. Then Eq. (101) is
converted to

analytic propose a

(a+d)2nVWV " +(1-2n)(V")?) 102)
40’ (o+ K )V +4n° AV +4n° V¢ =0
We will now analyze Eq. (102) to construct soliton
solutions by generalized Kudryashov method. We
substitute Eqgs. (40), (42) and (43) into Eq. (102). Then, we
employ the balance principle and determine a relation of
M and N as

N=M+1 (103)
Case-1: When M =0 and N =1 in Eqg. (103), then we
have the solution of Eq. (102) in the form

ko +kQ(¢)

IO

V()= (104)

where k; =0 and |, = 0. Substituting Eq. (104) into Eq.

(102), we obtain a system of algebraic equations. Solving
this system, we find the following results:

Set-1.
I,(1+n)(d + )
k0:07 kl:—o o7 , |0:|0,
n°p
L (105)
__npQ+r2m o dta
@+n?(d+a)’ 4n?
Set-2.
_lo(@+n)(d +a) _ 1@+ n)d+ea)
s oo YT g (106)
| = __M a):_a](2+d+
0w 1+n)%(d+a)’ 4n? "’

where « is an arbitrary constant. Substituting Egs. (105)-
(106) along with Q(&)=1/(1+e°) into Eq. (104) and
1
using the transformation U =V 2", we obtain exact
solution to Eq. (101). Consequently, we have the exact 1-
soliton solutions to Eq. (99) as follows:
By using the results in Eq. (105), we have

_JA+nd+a)f, X+ 2axt )|
w(xt) = {—4n2ﬂ [1 tanh[ > D} (107)
.ei{—rcx+[—a:c2+i;;}+5}

and
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_[@+n)d+a) X+ 2axt )| #
w(xt)= {W[l—coth{ > :D} (108)

‘el{—xx+[fmr2+%}+€}
By using the results in Eqg. (106), we obtain
1
2n
(0t = {w(ﬂh[ﬂm
an°p 2 (109)
. 2+d+a .
.el{—xx{—a/c 4n2 ]t 6}
and
1
2n
V(1) = {w[mam [ﬂm
an°p 2 (110)
i —KX+ —a/c2+d+a +
'el{fh [ 4n2 ]l 6}

Case-2: When M =1 and N =2 in Eqg. (103), then we
have the solution of Eq. (102) in the form

ko +k,Q(£) +k,Q°(&)

111
l, +LQ(S) -

V()=

where k, =0 and |, = 0. Substituting Eqg. (111) into Eq.

(102), we obtain a system of algebraic equations. Solving
this system, we find the following results:

Set-1.
ko =0, k1 = W.
2n°p
kZ:W’%:%, | =1, (112)
__npQs2n) e dra
1+n)’(d+a)’ 4n’
Set-2.
kO = 01 kl = (2|0 . Il)(lj n)(d +a) !
2n°p
K = (@, +I1);1n;r;)(d +a)7 =1, =1, (113)
2.2 n2
PP ) B
@, +1)?(1+n)2(d + ) an

Set-3.
K = L,(1+n)(d+a) _ I, -1)A+n)(d + )
° g Y 2n%p
K, = L+ n)z(d +a)' =1, =1, (114)
2n°p
(1+n)*(d +a) 4n®

where x is an arbitrary constant. Consequently, we obtain
the following exact traveling wave solutions to the R-
NLSE with dual-power law nonlinearity:

By using the results in Eqg. (112), we find exact 1-
soliton solutions as

_ | @+n)(d+ea) X+ 2axt 271”
W(X,t)—{ln—z’;a(l—tanh[ +2a D} (w19
.ei{wm[ﬂk%%}w}

and

1

_Jasnd+a)(, X+ 2axt )|
w(xt) = {—4n2[>’ [1 coth[ > D} (116)
.ei{ﬂoﬁ{—mcz +%]t+6}

By using the results in Eq. (113), we have solitary
wave solutions as

1
2n
(21, +1,)(1+n)(d + a)sech? { X+ ia/(t:|

y(x,t)=

4n2ﬁ[2I0 -, tanh[“i“’dD (117)

=KX+ —m\'ZJrM t+6
4n?
€

and
1
2n
@l +1,)(1+n)(d + &)csch? [“i‘”ﬂ
y(x,t)=1-
4n2ﬂ(2Io S coth{)ﬁimdD
ij—xx+ —ak2+d+a +
e 1 [ 4n2 } 9}

(118)

By using the results in Eqg. (114), we find exact 1-
soliton solutions as

w(xt) = {(1+ n)(zd +a) (1+ tanh [ X+ 2akt D}Z”
an°p 2 (119)

i —KX+H —mc2+dﬂ t+60
4n2
e
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and
1

(0t = {w[mam [ﬂm
4n°p 2 (120)

i —KX+ a/c2+d+a t+6
4n2
€

5. Extended trial equation method

In this section, we describe the extended trial equation
method [20], [29] for finding traveling wave solutions of
nonlinear partial differential equations (NLPDE) and
subsequently will apply this method to solve the R-NLSE.
We suppose that the given NLPDE for u(x,t) is in the

form
P (U, U, Uy, Uy, U, Uy,..) =0

T

(121)

where P is a polynomial. The essence of the extended
trial equation method can be presented in the following
steps:

Step-1: To find the traveling wave solutions of Eq. (121),
we introduce the wave variable

u(x,t) =U(&), &E=x—-wt (122)

where v is a constant to be determined later. Substituting
Eg. (122) into Eq. (121), we obtain the following ODE

Q(U,U"U",..)=0 (123)

Step-2: Take transformation and trial equation as follows:

U= Zg:rily‘
i=0

(124)

where
(V)
Y('¥)

_ MY A Y

(W) = A(Y) =
(125)

2,V o+ Y+ 2,

Using the relations (124) and (125), we can find

f2_q)(\P) & i—12
un _—Y(‘P) [;wi\l’ j

ur = L) - O(F)T(¥) [iiﬂ,i_lj
2Y2(P)

(126)

) (127)
CD 2
Y(‘P) ( E i(i-1)7,\¥ j

where ®(¥) and Y(¥) are polynomials. Substituting
these terms into Eq. (123) vyields an equation of
polynomial Q(¥) of ¥:

QW) =p¥ +-+p¥Y+p,=0 (128)

According to the balance principle we can determine a
relation of p, o, and ¢ . We can take some values of p,

o,and ¢.
Step-3: Let the coefficients of Q(¥) all be zero will yield
an algebraic equations system:

(129)

Solving this equations system (129), we will determine the
values of ovXps Horeeobly and oyl -
Step-4: Reduce Eq. (125) to the elementary integral form,

Y(¥)

+ 130
(séc,)j\/A(_qu)(q, (130)
Using a complete discrimination system for

polynomial to classify the roots of ®(¥), we solve the

infinite integral (130) and obtain the exact solutions to Eq.
(123). Furthermore, we can write the exact traveling wave
solutions to Eq. (121) respectively.

5.1. Application to R-NLSE (Kerr law)

We will now analyze Eq. (45) to obtain soliton
solutions by extended trial equation method. We substitute
Egs. (124) and (127) into Eq. (47). Then, we use the
balance principle and find that

o=p+25+2 (131)
When o =4, p=0 and ¢ =1 in Eq. (131), we obtain

U=z +,¥ (132)

7 (4, ¥° + 306" + 24, + 14)
2%,

UH:

(133)

where u, =0, y, #0. Substituting Egs. (132) and (133)

into Eq. (47), collecting the coefficients of W, and solving
the resulting system, we find the following results:

:ﬂ_% _Zﬂrorllo
’ 27, OH'?/, a+y ’
Brix
py === =, =, X = X (134)
2a+y)
To =Ty T =T, a)=—al(2+ﬂr§+—’ulrl(a+y)

27, %,
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Substituting these results into Egs. (125) and (130),
we find that

HE-E) =W [ JA(_ (135)
where
A(P) = ¥* cHgs oy Hy  to
Hy Hy Hy Hy (136)
we |2
Hy

Integrating Eq. (135), and inserting the result into Eq.
(132), then we obtain the exact solutions to Eq. (47).
Consequently, we achieve the traveling wave solutions to
the R-NLSE with Kerr law nonlinearity (45) as the
following:

When A(¥) = (¥ -4,)", then we obtain

Al
X+ 20kt —&;

q(x,t) = {z’o +0, At }
(137)

|{ ;cx+[ ax +ﬁrz+7#1 1((“7)] ]
e 0%

When A(W)=(¥-4)*(¥-4,) and A, >4, then we
get

4W2(ﬂ'2 -7
a2 [ (2~ 2,) (x+2axt - &) |

|{ xx+[ ak +13r2 MJ }
V4
e "0%0

q(x,t) =<7, + 7,4, +

(138)

When A(W) = (¥ -4)*(¥—1,)%, then we have

(4 -A)n
exp{ﬂlw_iz(x+ 2okt — &, )} -1

q(x,t) =<z, + 74, +

i{—KX+ w(+ 72+/ﬁ1( +7) 91
.e{ ( g 27079 ]
(139)
and
(4 -4)n
exp{ﬂ‘wl1 (x+2axt— 50)}

i =KX+ —ax +ﬁr Mt@
e 21920

q(x,t) =<7, + A +

(140)

When AP)= (P-4 (P-L)N(P-1,) and
A, > A, > A, then we attain
T, + T, 4
a0 21,
X t)=<—
24 = Ay — Ay + (4 —ﬂg)cosh(\\{?[x+ ZQKI]J
i —kx+| —ax?+ rg lﬁrl(aﬂ) t+6
e{ [ g 2Zr%g J }
=(h-A)A-4)
(141)
When  A(¥)= (¥ -4)(¥-2L)(¥-2)(¥-2) and

A > A, > 2, > 4, , then we achieve

7, + 1,4,
a4 =4) 4 = 4)

Ay — A, +(/11—14)sn2|:i\/2v§[x+2m<t—§o],l

|{ Kx{ ax +[fr ylrl(aH/)J }
.xe 0% ,

A= (/11 _}‘3)(12 _14)

qx,f) =4+

(142)

where
_ (A (A —A)
(4 =) 4 —4,)

Also, 4, (i=1,...,4) are the roots of the polynomial
equation

A(P) =0 (143)

When 7, =-7,4, and & =0, then we can reduce the
solutions (137)-(141) to plane wave solutions

i —kx+| —ax? + 12+”11( y)]+}
le }e{ { ﬁO 210;(0 t+0 (144)

1) =4+
90 { X+ 2axt

4W2(ﬂ'2 -4)7,
aW? [ (4~ 4,) (x+ 2axt) |

|{ KXJ{ aK +[;’rz MJ 9}
040

a(x,t) =
(145)

-€

singular soliton solutions
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_(-A)n |, e’
q(x,t) = T{l-'- coth [W(X + 20!Kt):|}

(146)
19 —KX+ arr + 2+;411(a 7 t+6
.e{ [ r 272 J }
and bright soliton solution
_ A
a(x,t) = { D+cosh[B(x+2oad)]} (147)
19— KX+ mr + r2+Mt 0
e{ [ & 21929 ] }
where
_2(A4 = A) (A4 - ﬂg)fl _ JO = 2)(3 - %)
e W (148)
o2kl
A=Ay

Here, A is the amplitude of the soliton, while B is the
inverse width of the soliton. These solitons exist for
7, <0. Moreover, when 7, =—-r;4, and & =0, we can

write the Jacobi elliptic function solution (142) as

q(x,t) = A -
D1+sn{3j[x+za,d],(ﬂz—ﬂe)(%—d
(A -4) 4 -4,)
i) kx| —ax?+ TZ+*’11( ) t+0
.e{ [ ro Zrox J }
(149)
where
A1 - Tl(ii_/lz)(ﬂu_/lz)’ D = /14—/12 ,
ﬂ’l_/h ﬂl—ﬂq (150)

i

5 - CVNG—RG2)
- (=1

Remark-1: When the modulus | —1, we can reduce the
solution (149) to a second form of singular optical soliton
solutions as

A
D, + tanhz[Bj (x+ 20(Kt):|

|{ KX+[ ak +ﬂ72 M} 9}
" 21929

where A, = 4,.
Remark-2: However, if 1—>0, we can reduce the
solution (149) to the periodic singular solutions as

a(xt) =

(151)

_ A
)=
0y {Dﬁsinz[Bj(X”mﬂ} (152)

|{ KX+[ ak +/fr2 M]t 9}
e 27040

where 4, = 4,.
5.2. Application to R-NLSE (Power law)

We will now analyze Eq. (62) to construct soliton
solutions by extended trial equation method. We substitute
Egs. (124), (126) and (127) into Eq. (65). Then, we use the
balance principle and find that

o= p+c+2 (153)

Case-1: When =3, p=0 and ¢ =1 in Eq. (153), we
have

V=r,+0%¥ (154)
V) = (Y + 1Y + 1Y + 1)
Zo (155)
3,V + 2.4,
V// = z-1( :u3 + 1u2 +/u_l_) (156)
2%,

where u; #0, y, #0. Substituting Egs. (154)-(156) into

Eg. (65), and solving the resulting system of algebraic
equations, we find the following results:

o[ @) (a+y)+8n° By, |

- 2(1+n)(a +7)

22, [ 41, (14 n)(e + ) +6n° By 1 |
7,(1+n)(a+7)

- 4n2ﬂ717(0

B T @t y) (157)

3p7, ,le(a+]/)
1+n an’ y,

Hy = Ky Xo = Xoo

M:

w=—-ak’+22
To=%y TL.=70

Substituting these results into Egs. (125) and (130), we
find that

s(E-g) = W[ W (158)
where
AP =W togr Py o
Hs Hs My (159)
Wl =22

Hs
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Integrating Eq. (158), and inserting the result into Eq.

1
(154), and using the transformation U =V 2" | then we
attain the exact solutions to Eq. (64). Consequently, we
write the traveling wave solutions to the R-NLSE with
power law nonlinearity (62) as the following:

When A(¥) = (¥ -4,)°, then we obtain rational function

solution as follows:
1

4t W,

2n
q(x,t) = Ty + T4 1
[X+2ak‘t—§o] (160)
i{—xx+[—ar«2 +ﬁ+w
€

t+6
0

1+n 4n21

When A(W)=(¥-4)*(¥-4,) and A, >4, then we
have solitary wave solution as follows:

7, + 1,4, 2n

q(Xlt): +Tl(ﬂ1—/12)tanh2{% ’%[XJJ&M-%]J

3Pty wy(aty)
i —nx+| —ax? 042220 g
1+n an2
]
e

(161)

When A(W)=(¥-A4)(¥-4,)° and 4 >4,, then we
attain hyperbolic function solution as follows:

T, + 10,4 2n

a0t = +rl(%—iz)cosech2(% /%[xnam]j

3fry  my(a+y)
i —axt| —ax? +——0 2225 g
1+n 4n2;(
0
€

(162)

When AM) =P -2)(¥Y-1,)(¥Y-4,;)and
A, >4, >4, then we have Jacobi elliptic function
solutions as follows:

T, + Ty 2n

- +7,(4, — A,)sn’ (il

2
3
i KX+ —onc2+ﬂ+M t+0
1+n 4nzl
0
€

q(xt) %[X“‘Z“’d—é}]xl]

(163)

where

,\}:
|
U})

|2

(164)

Also, 4, (i=1,2,3) are the roots of the polynomial
equation
A(Y)=0 (165)
When z, = -7, 4, and &, =0, then we can reduce the
solutions (160)-(162) to rational function solution

1+n 2

" }H } (166)

1
n 3p7, a+
9 —KX+ —akz+ﬁ+u
A

x’t =)
ax.t) X+ 2akt

1-soliton solution

3pry my(a+y)
i) —roxc+| —ax? + 0,72 t+6
A2 1+n 4n21
0
e

q(xt) = I
coshn | By (x+2axt)|

(167)
and singular soliton solution
Jo 2 3Py mplaty) 0
A3 el{ kX+[ ak” + o +74n210 JH

sinhn| B, (x+2axt) |

q(x,t) =

(168)
where

A=2rW,, A =[n(4 - 4>,

1 (169)
A =[n(h - )P, B, %,/%

Here, A, and A, are respectively the amplitudes of 1-
soliton and singular soliton, while B, is the inverse width
of the solitons. These solitons exist for 7, > 0. Moreover,
when 7, = -7, 4, and & =0, we can simplify the Jacobi
elliptic function solution (163) as follows:

q(x,t) = A4sn% [Bj [x+ 20nct],u]
- (170)
i{—/(x+[—ax2+sf::)+uz(:m HG}
e 4n 0
where

_ e D A4
AA _[71(2'2 23)] ’ Bj 2 Wl ’ (J 4!5)
(171)

Remark-3: When the modulus | —1, dark soliton

solutions fall out:
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q(x,t) = /-\4tanh%[Bj (x+2axt)]

37, 16 (a+
I(X+[ ax?+ lﬂ 0 M} 9+
+n
4n? 20

172)

€
where 4, = 4,.
Case-2: When o=4, p=0 and ¢ =2 in Eq. (153), we
have

V=g, +, ¥ +7,P° (173)
(7, +27,9)° (1, " + :us\Ps + WV + 'Y + Hy)

(\/!)2 -
Xo
(174)
V"= (z, + ZTQ\P)(4/J4‘P3 +3/J3\P2 +2,Y + 11,)
2%
27, (1, V' + 1,V + 1, W2 + 1Y (179)
+ T (V" + WV + 1,V + Y + 1)

Zo
where p, #0, y, #0. Substituting Egs. (173)-(175) into

Eg. (65), and solving the resulting system of algebraic
equations, we find the following results:

_ Wie _ 2n° Bro, 2,
o i@y T L)@ty

_ nzﬂlo (712 + 27072) 3 2n2ﬂ1-1;(0
e T @ty T T W@ty

nzﬂrz}(o

S iy N 176

M= T ) a+y) (176)
i + 47, [ ax® (L+0) - Bz, |
w=- ,
4z,(1+n)

Xo=Xor To=Tp T =T, 7,77
Substituting these results into Egs. (125) and (130), we
find that

dw
HE-E) =W, [ a77)
(E-&)=W,[ NG
where
INCOED AR R e R e R
H H Hy M
4 4 4 4 (178)
w, = L

Hy

Integrating Eq. (177) and taking &, =0, then we have the

traveling wave solutions to the R-NLSE with power law
nonlinearity (62) as the following:

When A(¥) = (¥ -4)*, then we obtain

0= [ZT [%Jr X+2aK’C] }

ﬂrf+4r2{a/c2 (1+n)—ﬂr0}
kXt ————— 2 t+0
e

4r2(1+n)
When A(P)=(¥-4)*(¥-4,) and A, >4, then we
get

(179)

B -z ||
X,t) = ; 5
400 ZDT At AN —[ (4 = 2,) (x+ 2axt) |
i”(x{ ﬂ¢12+412[m<2(1+n)ﬂro}}w]
412(1+n)
€
(180)
When A(¥) = (¥-4,)*(¥-4,)°, then we have
Q) =| a4+ L%
=0 exp{ﬂiwf (x+ cht)} -1
) ﬁrl +4r2 ax’ (1+n) ﬁro
B 4z, (Len)
€
(181)
and
Q) =| S| 4+ Aok
0 expriwf (x+2az<t)} -1
{ { ﬂzl +412 ak’ (1+n) Py J ]
e 4r2(1+n)
e
(182)

When AWP)= (P-4 (P-L)NP-1,) and
A, > A, > A, then we attain

,6112 +41, [wcz (1+n)ﬂr0}J ]
—_ = t+0

4z, (1+n)

q(x,t) = {ZzlriQi Tn J [

Q=4
- 2(h —45) (4 — )
N T e

(183)
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When  A() = (¥-4)(¥-4)(¥ -4 (¥-2,) and
A > A, > A, > 4, , then we achieve

{ { ﬂ112+4r2[ak'2(1+n)ﬁroJ] ]
1 x| ———————— = |t+0
e

2 on 4z, (1+n)
q(x,t) = {Zriﬁli} ,
Ql = /‘{2
+ (4 -4)A —4,)
Ja Ty + (B~ A5’ {i %)% —4) (x+2a;<t),|}
2vv2
(184)
where
= V=) - 2) (185)

(h = &) (4 —4,)

Also, 4, (i=1,...,4) are the roots of the polynomial
equation

A(Y)=0 (186)

Remark-4: When the modulus | —1, the hyperbolic
function solutions fall out:

/frf +41, {akz (1+n)—/310}
1 id—kx+ t+6
4z, (1+n)
e

q(x,t) = |:ZZ:TiQZi :|2”

Q=1+
(A—24)(4 —4)
Ay =2 +(ﬂl—l4)tanh{i /4 _ﬂ;\l)v(lz ~ ) (x+2ar<t)}
2 (187)
where 4, = 4, .

Remark-5: However, if | — 0, the periodic wave solution
are listed as follows:

ﬂr2+4r aK2(1+n)—ﬁr 1
1 i{—;cx{—lz[o]}tﬁ-ﬁ
€

2 Tan 47, (L+n) J
q(xt) = |:ZTiQBI:| '
Q, =4,
. (2= 2) 0= %)
Ay =2+ (4 ﬂh)sin{i 1 _ﬂzgv)v(/lz ~a) (X+20”"‘)}
(188)
where 4, = 4,.

5.3. Application to R-NLSE (Parabolic law)

We will now analyze Eq. (77) to construct soliton
solutions by extended trial equation method. We substitute
Egs. (124), (126) and (127) into Eqg. (80). Then, we use the
balance principle and find that

o= p+26+2 (189)

When o =4, p=0 and ¢ =1 in Eqg. (189), we have

V=g,+7¥ (190)
2 4 3 2
(\/!)2 = z-jl_ (/,14‘1" +,Ll3‘P +ﬂ2qj +lul\P+/u0) (191)
Xo
3 2
VH: T1(4,Ll4lP +31u;‘{l +21”2‘P+lul) (192)
Xo

where u, #0, y, #0. Substituting Egs. (190)-(192) into

Eqg. (80), collecting the coefficients of ¥, and solving the
resulting system, we find the following results:

_ (Ao (75 + o7 )+ 22015 (B +2rm,)

= rn(d+a) !
= 21,7, (38 +8y1,) 1y = — Ayzi
: 3d+a) 7Y 3d+a)’
o= E(—40{1{2 +6p7, +8yr? +M], (193)
4 Zo
Ho = HMHor Ho = Hye o= ZXor To=Tor T,57

Substituting these results into Eqgs. (125) and (130),
we find that

dw
HE-&) =W, [—= (194)
JA(Y)
where
AW =i oy Fayz gt
7 H He M
4 4 4 4 (195)

W3 = ﬁ
Hy
Integrating Eq. (194), and inserting the result into Eq.

1
(190), and using the transformation U =V 2 then we get
the exact solutions to Eg. (79). Consequently, we obtain
the traveling wave solutions to the R-NLSE with parabolic
law nonlinearity (77) as the following:

When A(¥) = (¥ -4,)", then we obtain
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W, 2
Xt)={r,+r A4 t—3>—
ax {TO h X+2a/ct—§o}

; Hy (d+a)
i —;r><+1 —4ax2+6ﬂr0+8n§+27 t+0
el ! 0

(196)

When A(W)=(¥-4)*(¥-4,) and A, >4, then we
get

4W32 (4 - A)n
W2 [ (2~ 2,) (x+ 20t~ &) |

15 (d+a
i *KX+£ *4(ZK2+6ﬁTO+B;/Tg+M t+6
el * o

q(x,t) =<7, + 7,4 +

(197)

When A(¥) = (¥ - 4,)*(¥ - 4,)%, then we have

(4 -4
%V;ﬂ? (X+20{K‘t—§0)}—1

3

q(x,t) =<z, + 7,4, +
exp{

. o (d+a)
|[—;cx+l —4a1c2+6ﬂro+87rg+27 t+81
4 20 J

ol
(198)

and

N

(4 -4)y
eXp|:j1V;AZ(X+20{Kt—§O):|—1

q(x,t) =<7, + 0,4 +

d+
i —K><+l —4w(2+6/jr0+8yr§+ﬂ2( ) t+e1
el * o )]

(199)

When AWP)= (P-4 (P-L)N(¥P-1,) and
A, > A, > A,, then we attain

a(x,t) =

20y )~ 1),
24,2y dy U - 2y oosn| VETINEZE) (45

T+ T4 —

1 (d+a
[ ~4mﬁ2+6/}’r0+8yrg+L H»Hl
e ! & J

(200)

When — A(Y) = (Y= A)(Y - L)Y -4)(¥-4,) and
A > A, > A, > ], , then we achieve

q(x,t) =

T+ A+ n(A-4) 4 —4,)
Ao = o + (A — A,)SN° {+W[x+zakt§0],l

d+a))
T 74mc2+5ﬂ1048;«rg+u o
el * &

(201)
where

o U= )= 2)

(202)
(4 =) 4 —4,)

Also, A, (i=1,...,4) are the roots of the polynomial

equation

A(P)=0 (203)

When 7, =-7,4, and & =0, then we can reduce the
solutions (196)-(200) to plane wave solutions

w1
R {i X+ ZM} (204)
Howee a0 ’o*sﬂg*m t+0
S
q(x.t) = AW (2, = 20)1, :
aw;[(-A)(x+2axt)] | (205)

1, (d+a
i —:c><+l —40:/;2+6/7r0+8;/r5+L t+6
el o

singular soliton solutions

q(x,t) = {@[l? coth |:/112W;/12(X + Zald):U}z

3

iJ—;(>(+l — w(2+ T+ T2+M + }
.el 4[4 Pt ey P0) }8
(206)
and bright soliton solutions
qx ) = A :
(D, +cosh[B, (x+2axt)])? (207)

1 (d+a
i —KX+£ —4ar(2+6/iro+8yrg +M t+0
el &

where
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5.4. Application to R-NLSE (Dual power law)

1
2
’ We will now analyze Eg. (99) to obtain soliton

_[ 24 -A)A-A)y
A=
A= / . : ;
solutions by extended trial equation method. We substitute
B, = V(= A) (4 - 4) , (208)  EGs. (124), (126) and (127) into Eq. (102). Then, we use
W, the balance principle and find that
24—y — 4
D,=—"— o=p+25+2 (213)
L kA
. . . . . When o =4, p=0 and ¢ =1 in Eq. (213), we have
Here, A, is the amplitude of the soliton, while B, is the
inverse width of the soliton. These solitons exist for VTR (214)
7, <0. Moreover, when 7, =-r,4, and &, =0, we can
write the Jacobi elliptic function solution (201) as (VW Y )
V) = (215)
Xo
t - % 3 2
q(X’ ) 1 VH — T1(4lu4\P +3/u3‘{l +2/”2\P+/'ll) (216)
(A — )4 —/14)D2 27
where u, #0, y, #0. Substituting Egs. (214)-(216) into

D, +sn’ {Bj (Xx+2axt),
(4 —A) 4, - 4,)
Eq. (102), collecting the coefficients of ¥, and solving
the resulting algebraic equations system, we find the

(209) following results:

_ 247, an’z) xo [ B+2nB+2y7,(1+0)]
r,(l+n)@d+2n)d+a)

) Hy (d+a)
i —r<><+l —4aK2+6ﬂro+87r(2)+27 t+6
el * 0

where
1
N {ﬁ(ﬂl—ﬂq)(ﬂa—a)jﬂ SR EL o
AA A=k (210) gt An g [2(0 20) + 5y, (L )]
B = ' - A)(4, - 4,) (i=7.9) 2 (1+n)(1+2n)(d + @) ’
W, an’z y, [ B+2nB +4yr,(1+n)]
Ho =ty = e dray A
Remark-6: When the modulus | —1, a second form of .
singular optical soliton solutions fall out: 1, = — an“yn xo Y= e T STy T
fo@+2n)dre) 0O e
2 2
A @ = —aic + B, + 1% ﬂ0712(d2+a)
q(x,t) = . 1+n 1+2n  4n°ryy,
(Dathanhz[Bj(x+2m¢t)J)E (211) o _
Substituting these results into Egs. (125) and (130),
i{—;cm%[—zlmcz+6/3ro+87r(2)+%(:a)}+9} we find that
e
dvy
+HE-E&) =W, | ——— 218
where A = A, =& = [ (218)
Remark-7: However, if | — 0, periodic singular solutions where
are listed as follows:
Aw) =t s o oy g fo
U yzi Yz U
_ A6 4 4 4 4 (219)
q(Xlt) - 1 W - ﬁ
4
(212) ’!M

1

(D3 +sin2[B,— (x+20u<t)])E

d+a
5+MJHH}
2]

Integrating Eq. (218), and inserting the result into Eq.

(214), and using the transformation U =V 2" then we

i{*/(x+%[74a/(2+6ﬂro+8;/r
e
attain the exact solutions to Eq. (101). Consequently, we

where 4, = 4;.
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obtain the traveling wave solutions to the R-NLSE with
dual-power law nonlinearity (99) as the following:

When A(¥) = (¥ -4)*, then we obtain

1

W 2n
q(x,t) = {70 oAt ;—4}
X+2akt—-&, (220)
w [ W) *’ofl(d*“)] g}
KX+ oK’ +1+n+1+2n 4n2r21
e 0%

When A(W)=(¥-4)°(¥-4,) and A, >4, then we
get

4'\/\/42 (/12 _/11)71
~[(4 - 2) (x+2axt &) ]

2
d+a
|| KX+{ w(2+ﬂﬂ+ 0 +/40r1( )} +0}
€

q(x,t) =<7, + A4 +

1+n 1+2n 4n27310

(221)

When A(W) = (¥ - 4)*(¥—1,)%, then we have

(4 —A)n
%W_ﬂz(x+2a/ct—§0)}—l

4

q(x,t) =<z, + 5,4, +
exp{

2
T, T 7 (d+a
iq—KX+ mc2+ﬂo %0 M +6
Ten Te2n 4n2;2
€

040

(222)
and

2n
axt) =47, +nd + (4 =47

EXD{H(H ZaKt—é‘O):|_
W
I\ ;cx+[ mc2+ﬂo }qg M] 9]

e 1+n 1+2n 4n21510

(223)

When AWP) = (P-4 (P-L)N(¥P-1,) and
A, > 24, > A,, then we attain

a(x,t) =

T, + T4 2n

_ 2(4 - )4~ 4)r
2~ 2+ —@)cosh{ww(x+2am)}

W4

1+n 1+2n an2;2

d
|{ »cx+[ aK 2+ﬂ—0+ yo ”01( HI)J H}
e 0%

(224)

When  A(¥) = (¥ -24)(¥-4)(¥-A4)(¥-4,) and
A > A, > A, > 4, , then we achieve

a(x.t) =

T, + 1,4, 2n

5 (4 -4)A, —4)

Q=2 + (A — 4,)sN° {i\MM(X+2aK{—§O),I

+

2VV4

1+n 14+2n 42,2

2
d+
i r(><+[ aA2+h+ﬁ+yoll( u)]ns
e 070

(225)

where
_ (= A) (4 —4)

(226)
(4 —A) 4, -4,)

Also, 4, (i=1,...,4) are the roots of the polynomial
equation
A(P)=0 (227)

When 7, =-r,4 and & =0, then we can reduce the
solutions (220)-(224) to plane wave solutions

2 Pry yrg /.zorl(d+a)

S i —kX+ —ak S+ — A —————— [t+0
2n 1+n 1+2n 4n2r2)(
e 040

(228)

W
X, t #
q(){xzm

4W42 (4L -4y
~[(4 - 2) (x+2axt) |

2
T 7 o (d+a
i — KX+ wc2+ﬂ0 70 M +0
1+n  1+2n 4n2721
e 0%0

q(x,t) =
(229)

singular soliton solutions

q(x,t) = {%(ﬁ coth Fi 4 (x+ 2a/<*t)D}2n

2
.\ m{ w2 P, 70 M] g]
e

1+n 1+2n 42,2

0%
(230)
and bright soliton solutions
ax ) = A 1
(D +cosh[B, (x+ 20515[)])Z (231)

+0
L+ 142n 42,2 ]

2
77 d+a
{ [ w20 7 o,
e 0%
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where
A {2(4—@)(4—@)@2“ 5 o NG= 2 —%)
/13_12 , ? W4 ’
p, = 2%
Ao =2

(232)

Here, A, is the amplitude of the soliton, while B, is the

inverse width of the soliton. These solitons exist for
7, <0. Moreover, when 7, =-r,4, and &, =0, we can
write the Jacobi elliptic function solution (225) as

qxt) = A -
[DS +sn° {Bj (x+2aﬂ),WDzn
i3 —KX+H 712K2+@+ﬁ+@ t+6
e{ [ 1+n 1+2n 4y $ 710 J }
(233)

where

A, :[Tl(ﬂq_ﬂz)(/lﬂ._ﬂ?)jzn, D, = A=A ’
%_24 /11_/14

o - (—1)"«/@12—\;3)@2 ) (i-1011)

i

(234)

Remark-8: When the modulus | —1, the hyperbolic
function solutions fall out:

q(xt) = A :

(D5 +tanh2[|3,- (x+20a<t)})Z

2 2
(7 T 7 (d+a
i{r«m[a,(z fOJOJ‘oﬂ)JHg}
€

(235)

1+n 1+2n 4”2Tglg
where 4, = 4,.

Remark-9: However, if |1 —>0, the periodic wave
solutions are listed as follows:

q(xt) = A :

(s +sin?[ B, (x+2axt) )

l+6}

(236)

1+n 1+2n 2.2

2 2
_ By rb myet(d+a)
i) —kxt| —ax? 404 70 FOL VT
e 4n 040

where 4, = 4,.

5.5. Application to R-NLSE (Log law)

In case of log law nonlinearity, there is no radiation
and consequently there is no shedding of energy and is
hence a preferred means of soliton communication. For
log law nonlinearity,

F(s)=Ins (237)

So the resonant nonlinear Schrodinger’s equation with
log law nonlinearity is

i'//+al/fxx+ﬂ|n(|wlz)w+7{%}w=0 (239)

Under the travelling wave transformation

w(x 1) =UE)T™ ™M) E=x12kat  (239)

we have

(a+7)U"—(0+x’a)U+280IN(U)=0  (240)

In order to obtain closed form solutions, we use the
transformation

1

U=exp— 241
iy (241)

that will reduce Eq. (240) into the ODE

(a+7)[ (V) + 2V (V)2 -V |+ 2V —(0+K*a)V* =0
(242)

We will now analyze Eq. (242) to secure soliton
solutions by extended trial equation method. We substitute
Egs. (124), (126) and (127) into Eq. (242). Then, we use
the balance principle and find that

oc=p+c+2 (243)

Case-1: When =3, p=0 and ¢ =1 in Eq. (243), we
have

V=g, +0,¥ (244)
2P+ 1,V + Y
(\/!)2 = z-1 (/’13 +1L12/1/ +ILL.I. +ILIO) (245)
0
3V + 21,
VH = z-1( :u3 ;—ZluZ +/u_l_) (246)
0

where u, =0, y, #0. Substituting Eqs. (244)-(246) into

Eq. (242), and solving the resulting system of algebraic
equations, we find the following results:
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_ 2fnx _ 881
° i(aty) n(a+y)
647 257,
,u2 - _ ﬂ OZO , ﬂa - _ ﬂ 1/’{0 , (247)
a+y a+y

Xo=ZXor To=Tor T =T w:_(ﬂ+a’(2)

Substituting these results into Eqgs. (125) and (130),
we find that

s(E-g) = W [ W (248)
where
AP =i+ w2 Py Fo g =Ko (o49)

H3 Ha H3 Ha

Integrating Eq. (248), and inserting the result into Eqs.
(241) and (244), then we attain the exact solutions to Eq.
(240). Consequently, we have the exact solutions to the R-
NLSE with log law non

linearity (238) as the following:

When A(¥) = (¥ -4,)%, then we obtain

Az )N B
’t = 0 ! +
a0t exp[r +Tﬂ1+(x+2m«t—(§o) } (250)
.ei{*l(')(*(ﬂ‘#al(z)t‘#g}

When A(W)=(¥Y-4)*(¥-4,) and A, >4, then we
have
q(x,t) =

exp|:T0+T1/12+7-'1(/11 ﬂz)tanh( Fl ﬂz[x+2mct go]ﬂ

.ei{—xx—(ﬁ+axz)l+6}

(251)

When A(P)=(¥-4)(¥-4,)° and 4 > A,, then we
attain

q(xt)—exp{r(yrrlﬂi+rl(ﬂ1 iz)cosech( V’l ﬂQ[x+2m<t]H

.ei{—r\'x—( +U(l\‘2)!+9}
(252)

When AWP)=(Y-)(¥Y-L)(¥Y-4) and
A > A, > Ay, then we get

-1

q(x.t) =exp ro+rlﬂe+rl(ﬂ,223)snz[¢$ ﬂlv;ﬂs [x+2am§0],lﬂ

.ei{fx'xf(ﬁer(z)H[l}

(253)

where
:2,2 4 (254)
A=
Also, 4, (i=1,2,3) are the roots of the polynomial
equation
A(W)=0 (255)
When z,=-z,4, and &, =0, then we can reduce the

solutions (250)-(252) to the following exact solutions,
respectively:

3 (X + 20ﬁ<t)2 i{—xx—(/i+w(2)t+(9}
q(x,t) = exp [—les e (256)

Q(x,t)=exp[ o 2) cosh [l /llv;jz (x+2mct)ﬂ

.ei{—lcx—(/HaKz)HH}
(257)

and

C1(X,t):exp[ 1(311 ﬂz)smh [l /%Wj? (x+2a;ct)ﬂ

.ei{—x'x—(ﬁ+wc2)t+9}

(258)

Moreover, when 7,=-r,4; and &, =0, we can
simplify the exact solutions (253) as follows:

q(x,t) = exp 1 e [?1 —
n(h—-4) A LA

el{—w—(/ﬂwﬁ]”ﬂ}
(259)

Remark-10: When the modulus | —1, we can write the
solutions (259) as

q(xt) = eXp{mcothz[¢% ﬂlw;ﬂ? [x+ Zmd]ﬂ

—KX—| /J’+0m‘2 t+6
)

€
(260)

where 4, = 4,.

Case-2: When o=4, p=0 and ¢ =2 in Eq. (243), we

have

V=r,+¥+7,P° (261)
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2 _ (420 P)* (V" + Y + 1V + 1Y + 1)

V")
Xo
(262)
v = @20 P)AuY + 30 + 24, + 1)
2
.,k (263)
L2 WY+ Y+ Y+ Y i)

Xo

where u, #0, y, #0. Substituting Egs. (261)-(263) into

Eq. (242), and solving the resulting system of algebraic
equations, we find the following results:

_ BEx _ BT
/uo - 3 1 /u1 - 2 l
32z, (a+y) 4z, (a+7y)
_ 3n P
2 ’ 3 ’
4z, (a+y) a+y
5 ) (264)
_ T2 X0 _ _n
- < - b T - _,
Hy Aa+7) Xo = Xo 0 4z,

— — — 2
=T, T,=T,, a)——(ﬂ+a/<)

Substituting these results into Eqgs. (125) and (130),
we find that

dw
HE-&) =W [—— (265)
JA(Y)
where
AP) =+ g gz oyt
7 H e M
4 4 4 4 (266)

W6 = @
\} Hy
Integrating Eq. (265) and taking &, =0, then we have

the exact solutions to the R-NLSE with log law
nonlinearity (238) as the following:

When A(¥) = (¥-4)*, then we obtain
a(xt) = exp{iﬂ (4 +

.ei{—xx—(ﬁ+m(2)t+0}

When A(W)=(¥-4)*(¥-4,) and A, >4, then we
get

W, ] *
X+ 2okt (267)

AW (2, - 4)
AWZ [ (4~ 4,) (x+2axt) |

g(x,t) =exp ZZ:Ti A+

.ei{—lcx—(ﬂ+azc2)t+€}

(268)
When A(¥) = (¥ -4,)*(¥-4,)°, then we have
q(x,t) = exp ZZ:Ti A + LA
=0 exp{ﬂlv; (X+2akt)}—l
'ei{—;(x—(ﬂ+ak2)t+9}
(269)
and
q(x,t) = exp Zz"ri A+ A2
=0 expri\/;/12 (X+2ak’[)}—1
.ei{—zcx—(ﬂ+axz)t+€}
(270)

When AP)= (P-4 (P-L)N(P-1,) and
A, > 4, > A, then we attain
a(xt) =

oxp Zzlfi A- 24— 2) (A4 —4)
a 24, =2 = 25 + (45 — A,) cosh 7WCVM(X+201M)
'el{f»\'xf(ﬂﬂmzjul/‘{
(271)
When  A(¥)= (¥ -A)(¥ -4 ¥-4)(¥-4) and

A > A, > A5 > 4, , then we achieve
a(x.t) =

-1
i

(A -4)A —4,)
Ay =2+ (2 = A)s0° i7W(X+ZaKt),I

exp Zz:ri A+
i=0

‘ei<f»cxf(/i+mtz)l+0}

(272)

where
= G =)= 2) 273)
(4 =) (4 —4,)
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Also, 4, (i=1,...,4) are the roots of the polynomial
equation

A(W)=0 (274)
Remark-11: When the modulus | —1, we write the

solutions (272) as
q(x,t) =

- (A =24)A = 4,)
exp Zr, A+
I:O Ay =25+ (2 — 2, )tanh? i7W(x+2am)

6

o = xf(/iwzx-z )ua}

(275)

where 4, = 4,.
Remark-12: However, if | — 0, we write the solutions
(272) as

q(x.t) =

-1

S (A =4) 4 —4,)
exp| | 4+
e Ay =2y + (A = A )sin’ iW(X*’Z&KI)

.el{—xx—(/bfmcz )Hé}}

(276)
where 4, = 4,.
6. Conclusion

We used the FIM for acquiring several new exact
solutions of RNLSE with power law nonlinearity and time
dependent coefficients. We have acquired different types
exact solutions which are rational, dark, dark-bright
optical combo and new as our research from literature. It is

illustrated velocity functions W(t) and Vv(t) is related

with the group velocity term a(t). Consequently, the

FIM is crucial one to construct different types of the exact
solutions of the NPDE and systems.
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